Copied to
clipboard

?

G = C42.94D10order 320 = 26·5

94th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.94D10, C10.512- (1+4), C4⋊C4.271D10, C42⋊D52C2, C20.6Q86C2, D102Q812C2, C4.95(C4○D20), C42⋊C213D5, (C2×C10).73C24, (C4×C20).24C22, C22⋊C4.97D10, C4.Dic1012C2, Dic53Q812C2, D10.30(C4○D4), C20.197(C4○D4), C20.48D429C2, (C2×C20).148C23, (C22×C4).194D10, C23.D103C2, C4⋊Dic5.34C22, C23.85(C22×D5), D10.12D4.1C2, (C2×Dic5).26C23, (C4×Dic5).77C22, C22.102(C23×D5), C2.9(D4.10D10), C23.D5.96C22, D10⋊C4.96C22, (C22×C10).143C23, (C22×C20).231C22, C52(C22.46C24), C10.D4.97C22, (C22×D5).176C23, (C2×Dic10).149C22, (D5×C4⋊C4)⋊12C2, C2.12(D5×C4○D4), (C4×C5⋊D4).5C2, C2.32(C2×C4○D20), C10.30(C2×C4○D4), (C2×C4×D5).69C22, (C5×C42⋊C2)⋊15C2, (C5×C4⋊C4).309C22, (C2×C4).275(C22×D5), (C2×C5⋊D4).111C22, (C5×C22⋊C4).113C22, SmallGroup(320,1201)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.94D10
C1C5C10C2×C10C22×D5C2×C4×D5D5×C4⋊C4 — C42.94D10
C5C2×C10 — C42.94D10

Subgroups: 662 in 214 conjugacy classes, 97 normal (43 characteristic)
C1, C2 [×3], C2 [×3], C4 [×2], C4 [×12], C22, C22 [×7], C5, C2×C4 [×2], C2×C4 [×4], C2×C4 [×15], D4 [×2], Q8 [×2], C23, C23, D5 [×2], C10 [×3], C10, C42 [×2], C42 [×3], C22⋊C4 [×2], C22⋊C4 [×6], C4⋊C4 [×2], C4⋊C4 [×14], C22×C4, C22×C4 [×3], C2×D4, C2×Q8, Dic5 [×7], C20 [×2], C20 [×5], D10 [×2], D10 [×2], C2×C10, C2×C10 [×3], C2×C4⋊C4, C42⋊C2, C42⋊C2 [×2], C4×D4, C4×Q8, C22⋊Q8 [×2], C22.D4 [×2], C42.C2 [×3], C422C2 [×2], Dic10 [×2], C4×D5 [×6], C2×Dic5 [×3], C2×Dic5 [×4], C5⋊D4 [×2], C2×C20 [×2], C2×C20 [×4], C2×C20 [×2], C22×D5, C22×C10, C22.46C24, C4×Dic5, C4×Dic5 [×2], C10.D4, C10.D4 [×8], C4⋊Dic5, C4⋊Dic5 [×4], D10⋊C4, D10⋊C4 [×2], C23.D5, C23.D5 [×2], C4×C20 [×2], C5×C22⋊C4 [×2], C5×C4⋊C4 [×2], C2×Dic10, C2×C4×D5, C2×C4×D5 [×2], C2×C5⋊D4, C22×C20, C20.6Q8 [×2], C42⋊D5 [×2], C23.D10 [×2], D10.12D4 [×2], Dic53Q8, C4.Dic10, D5×C4⋊C4, D102Q8, C20.48D4, C4×C5⋊D4, C5×C42⋊C2, C42.94D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×4], C24, D10 [×7], C2×C4○D4 [×2], 2- (1+4), C22×D5 [×7], C22.46C24, C4○D20 [×2], C23×D5, C2×C4○D20, D5×C4○D4, D4.10D10, C42.94D10

Generators and relations
 G = < a,b,c,d | a4=b4=1, c10=d2=b2, ab=ba, cac-1=dad-1=ab2, bc=cb, dbd-1=a2b, dcd-1=c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 63 42 109)(2 74 43 120)(3 65 44 111)(4 76 45 102)(5 67 46 113)(6 78 47 104)(7 69 48 115)(8 80 49 106)(9 71 50 117)(10 62 51 108)(11 73 52 119)(12 64 53 110)(13 75 54 101)(14 66 55 112)(15 77 56 103)(16 68 57 114)(17 79 58 105)(18 70 59 116)(19 61 60 107)(20 72 41 118)(21 90 139 148)(22 81 140 159)(23 92 121 150)(24 83 122 141)(25 94 123 152)(26 85 124 143)(27 96 125 154)(28 87 126 145)(29 98 127 156)(30 89 128 147)(31 100 129 158)(32 91 130 149)(33 82 131 160)(34 93 132 151)(35 84 133 142)(36 95 134 153)(37 86 135 144)(38 97 136 155)(39 88 137 146)(40 99 138 157)
(1 139 11 129)(2 140 12 130)(3 121 13 131)(4 122 14 132)(5 123 15 133)(6 124 16 134)(7 125 17 135)(8 126 18 136)(9 127 19 137)(10 128 20 138)(21 52 31 42)(22 53 32 43)(23 54 33 44)(24 55 34 45)(25 56 35 46)(26 57 36 47)(27 58 37 48)(28 59 38 49)(29 60 39 50)(30 41 40 51)(61 146 71 156)(62 147 72 157)(63 148 73 158)(64 149 74 159)(65 150 75 160)(66 151 76 141)(67 152 77 142)(68 153 78 143)(69 154 79 144)(70 155 80 145)(81 110 91 120)(82 111 92 101)(83 112 93 102)(84 113 94 103)(85 114 95 104)(86 115 96 105)(87 116 97 106)(88 117 98 107)(89 118 99 108)(90 119 100 109)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 20 11 10)(2 9 12 19)(3 18 13 8)(4 7 14 17)(5 16 15 6)(21 138 31 128)(22 127 32 137)(23 136 33 126)(24 125 34 135)(25 134 35 124)(26 123 36 133)(27 132 37 122)(28 121 38 131)(29 130 39 140)(30 139 40 129)(41 52 51 42)(43 50 53 60)(44 59 54 49)(45 48 55 58)(46 57 56 47)(61 64 71 74)(62 73 72 63)(65 80 75 70)(66 69 76 79)(67 78 77 68)(81 146 91 156)(82 155 92 145)(83 144 93 154)(84 153 94 143)(85 142 95 152)(86 151 96 141)(87 160 97 150)(88 149 98 159)(89 158 99 148)(90 147 100 157)(101 116 111 106)(102 105 112 115)(103 114 113 104)(107 110 117 120)(108 119 118 109)

G:=sub<Sym(160)| (1,63,42,109)(2,74,43,120)(3,65,44,111)(4,76,45,102)(5,67,46,113)(6,78,47,104)(7,69,48,115)(8,80,49,106)(9,71,50,117)(10,62,51,108)(11,73,52,119)(12,64,53,110)(13,75,54,101)(14,66,55,112)(15,77,56,103)(16,68,57,114)(17,79,58,105)(18,70,59,116)(19,61,60,107)(20,72,41,118)(21,90,139,148)(22,81,140,159)(23,92,121,150)(24,83,122,141)(25,94,123,152)(26,85,124,143)(27,96,125,154)(28,87,126,145)(29,98,127,156)(30,89,128,147)(31,100,129,158)(32,91,130,149)(33,82,131,160)(34,93,132,151)(35,84,133,142)(36,95,134,153)(37,86,135,144)(38,97,136,155)(39,88,137,146)(40,99,138,157), (1,139,11,129)(2,140,12,130)(3,121,13,131)(4,122,14,132)(5,123,15,133)(6,124,16,134)(7,125,17,135)(8,126,18,136)(9,127,19,137)(10,128,20,138)(21,52,31,42)(22,53,32,43)(23,54,33,44)(24,55,34,45)(25,56,35,46)(26,57,36,47)(27,58,37,48)(28,59,38,49)(29,60,39,50)(30,41,40,51)(61,146,71,156)(62,147,72,157)(63,148,73,158)(64,149,74,159)(65,150,75,160)(66,151,76,141)(67,152,77,142)(68,153,78,143)(69,154,79,144)(70,155,80,145)(81,110,91,120)(82,111,92,101)(83,112,93,102)(84,113,94,103)(85,114,95,104)(86,115,96,105)(87,116,97,106)(88,117,98,107)(89,118,99,108)(90,119,100,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20,11,10)(2,9,12,19)(3,18,13,8)(4,7,14,17)(5,16,15,6)(21,138,31,128)(22,127,32,137)(23,136,33,126)(24,125,34,135)(25,134,35,124)(26,123,36,133)(27,132,37,122)(28,121,38,131)(29,130,39,140)(30,139,40,129)(41,52,51,42)(43,50,53,60)(44,59,54,49)(45,48,55,58)(46,57,56,47)(61,64,71,74)(62,73,72,63)(65,80,75,70)(66,69,76,79)(67,78,77,68)(81,146,91,156)(82,155,92,145)(83,144,93,154)(84,153,94,143)(85,142,95,152)(86,151,96,141)(87,160,97,150)(88,149,98,159)(89,158,99,148)(90,147,100,157)(101,116,111,106)(102,105,112,115)(103,114,113,104)(107,110,117,120)(108,119,118,109)>;

G:=Group( (1,63,42,109)(2,74,43,120)(3,65,44,111)(4,76,45,102)(5,67,46,113)(6,78,47,104)(7,69,48,115)(8,80,49,106)(9,71,50,117)(10,62,51,108)(11,73,52,119)(12,64,53,110)(13,75,54,101)(14,66,55,112)(15,77,56,103)(16,68,57,114)(17,79,58,105)(18,70,59,116)(19,61,60,107)(20,72,41,118)(21,90,139,148)(22,81,140,159)(23,92,121,150)(24,83,122,141)(25,94,123,152)(26,85,124,143)(27,96,125,154)(28,87,126,145)(29,98,127,156)(30,89,128,147)(31,100,129,158)(32,91,130,149)(33,82,131,160)(34,93,132,151)(35,84,133,142)(36,95,134,153)(37,86,135,144)(38,97,136,155)(39,88,137,146)(40,99,138,157), (1,139,11,129)(2,140,12,130)(3,121,13,131)(4,122,14,132)(5,123,15,133)(6,124,16,134)(7,125,17,135)(8,126,18,136)(9,127,19,137)(10,128,20,138)(21,52,31,42)(22,53,32,43)(23,54,33,44)(24,55,34,45)(25,56,35,46)(26,57,36,47)(27,58,37,48)(28,59,38,49)(29,60,39,50)(30,41,40,51)(61,146,71,156)(62,147,72,157)(63,148,73,158)(64,149,74,159)(65,150,75,160)(66,151,76,141)(67,152,77,142)(68,153,78,143)(69,154,79,144)(70,155,80,145)(81,110,91,120)(82,111,92,101)(83,112,93,102)(84,113,94,103)(85,114,95,104)(86,115,96,105)(87,116,97,106)(88,117,98,107)(89,118,99,108)(90,119,100,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20,11,10)(2,9,12,19)(3,18,13,8)(4,7,14,17)(5,16,15,6)(21,138,31,128)(22,127,32,137)(23,136,33,126)(24,125,34,135)(25,134,35,124)(26,123,36,133)(27,132,37,122)(28,121,38,131)(29,130,39,140)(30,139,40,129)(41,52,51,42)(43,50,53,60)(44,59,54,49)(45,48,55,58)(46,57,56,47)(61,64,71,74)(62,73,72,63)(65,80,75,70)(66,69,76,79)(67,78,77,68)(81,146,91,156)(82,155,92,145)(83,144,93,154)(84,153,94,143)(85,142,95,152)(86,151,96,141)(87,160,97,150)(88,149,98,159)(89,158,99,148)(90,147,100,157)(101,116,111,106)(102,105,112,115)(103,114,113,104)(107,110,117,120)(108,119,118,109) );

G=PermutationGroup([(1,63,42,109),(2,74,43,120),(3,65,44,111),(4,76,45,102),(5,67,46,113),(6,78,47,104),(7,69,48,115),(8,80,49,106),(9,71,50,117),(10,62,51,108),(11,73,52,119),(12,64,53,110),(13,75,54,101),(14,66,55,112),(15,77,56,103),(16,68,57,114),(17,79,58,105),(18,70,59,116),(19,61,60,107),(20,72,41,118),(21,90,139,148),(22,81,140,159),(23,92,121,150),(24,83,122,141),(25,94,123,152),(26,85,124,143),(27,96,125,154),(28,87,126,145),(29,98,127,156),(30,89,128,147),(31,100,129,158),(32,91,130,149),(33,82,131,160),(34,93,132,151),(35,84,133,142),(36,95,134,153),(37,86,135,144),(38,97,136,155),(39,88,137,146),(40,99,138,157)], [(1,139,11,129),(2,140,12,130),(3,121,13,131),(4,122,14,132),(5,123,15,133),(6,124,16,134),(7,125,17,135),(8,126,18,136),(9,127,19,137),(10,128,20,138),(21,52,31,42),(22,53,32,43),(23,54,33,44),(24,55,34,45),(25,56,35,46),(26,57,36,47),(27,58,37,48),(28,59,38,49),(29,60,39,50),(30,41,40,51),(61,146,71,156),(62,147,72,157),(63,148,73,158),(64,149,74,159),(65,150,75,160),(66,151,76,141),(67,152,77,142),(68,153,78,143),(69,154,79,144),(70,155,80,145),(81,110,91,120),(82,111,92,101),(83,112,93,102),(84,113,94,103),(85,114,95,104),(86,115,96,105),(87,116,97,106),(88,117,98,107),(89,118,99,108),(90,119,100,109)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,20,11,10),(2,9,12,19),(3,18,13,8),(4,7,14,17),(5,16,15,6),(21,138,31,128),(22,127,32,137),(23,136,33,126),(24,125,34,135),(25,134,35,124),(26,123,36,133),(27,132,37,122),(28,121,38,131),(29,130,39,140),(30,139,40,129),(41,52,51,42),(43,50,53,60),(44,59,54,49),(45,48,55,58),(46,57,56,47),(61,64,71,74),(62,73,72,63),(65,80,75,70),(66,69,76,79),(67,78,77,68),(81,146,91,156),(82,155,92,145),(83,144,93,154),(84,153,94,143),(85,142,95,152),(86,151,96,141),(87,160,97,150),(88,149,98,159),(89,158,99,148),(90,147,100,157),(101,116,111,106),(102,105,112,115),(103,114,113,104),(107,110,117,120),(108,119,118,109)])

Matrix representation G ⊆ GL4(𝔽41) generated by

343900
24700
0090
0009
,
32000
03200
002335
00618
,
133500
12800
004035
00635
,
28600
401300
00400
0061
G:=sub<GL(4,GF(41))| [34,24,0,0,39,7,0,0,0,0,9,0,0,0,0,9],[32,0,0,0,0,32,0,0,0,0,23,6,0,0,35,18],[13,1,0,0,35,28,0,0,0,0,40,6,0,0,35,35],[28,40,0,0,6,13,0,0,0,0,40,6,0,0,0,1] >;

65 conjugacy classes

class 1 2A2B2C2D2E2F4A···4H4I4J4K4L4M···4R5A5B10A···10F10G10H10I10J20A···20H20I···20AB
order12222224···444444···45510···101010101020···2020···20
size1111410102···244101020···20222···244442···24···4

65 irreducible representations

dim11111111111122222222444
type+++++++++++++++++--
imageC1C2C2C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4D10D10D10D10C4○D202- (1+4)D5×C4○D4D4.10D10
kernelC42.94D10C20.6Q8C42⋊D5C23.D10D10.12D4Dic53Q8C4.Dic10D5×C4⋊C4D102Q8C20.48D4C4×C5⋊D4C5×C42⋊C2C42⋊C2C20D10C42C22⋊C4C4⋊C4C22×C4C4C10C2C2
# reps122221111111244444216144

In GAP, Magma, Sage, TeX

C_4^2._{94}D_{10}
% in TeX

G:=Group("C4^2.94D10");
// GroupNames label

G:=SmallGroup(320,1201);
// by ID

G=gap.SmallGroup(320,1201);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,387,100,675,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽